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ABSTRACT

This paper presents a procedure for processing real world
image sequences produced by relative translational motion
between a sensor and environmental objects. In this.
procedure, the determination of the direction of sensor
translation is eff~ctively combined with the determination of
the displacements of image features and environmental depth.
It requires no restrictions on the direction of motion, nor
the location and shape of environmental objects. It has been
applied successfully to real-world image sequences from
several different task domains.

The processing consists of two basic steps: Feature
Extraction and Search. The feature extraction process picks
out small image areas which may correspond to distinguishing
parts of environmental objects. The direction of
translational motion is then found by a search which
determines the image displacement paths along which a measure
of feature mismatch is minimized for a set of features The
correct direction of translation will minimize this error
measure and also determine the corresponding image
displacement paths for which the extracted features match
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1. INTRODUCTION

This paper develops a procedure for processing real world

image sequences from a translating sensor. 1he procedure is

not dependent on an initial matching process for finding image

displacements before inferring environmental depth and camera

motion. Instead, the determination of the direction of sensor

translation is combined with the determination of the

displacements of image features and of environmental depth.

No restrictions on the shape of environmental objects are

required. The procedure has been applied to real world image

sequences under several different operating conditions with

robust performance.

rhe processing consists of two basic steps: Feature-

Extraction and Search. The feature extraction process picks

out small image areas which may correspond to disting-ishing

parts of environmental objects. The direction of

translational motion is then found by a search which

determines the image displacement paths along which a measure

of feature mismatch is minimized for a set of features. The

correct direction of translation will minimize this error

measure and also determine the corresponding image

displacement paths for which the extracted features match

well1.

The feature extraction process, which is presented in section
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two, finds distinctive points along image contours determined

by simple processes which are sensitive to image edges. it

finds features which are positioned at points of high

curvature along these contours. The technique utilizes

contours determined by zero-crossing extraction and image

thresholding.

The search process, which is presented in section three,

minimizes a simple err'or measure. This error measure is

defined with respect to a unit sphere with each point on the

sphere corresponding to a different direction of sensor

translation. A given direction of translation constrains the

motion of extracted image features to straight lines which

radiate from or converge onto a single point. The error

measure thus associates with a point on the unit sphere,

corresponding to a particular translational axis, a number

describing the total extent of feature mismatch along the

displacement paths determined by the translational axis.

Experiments have shown this error measure to be smooth and

with a distinct minimum in a large neighboorhood about the

correct translational axis. Because of this, the search

process can be quite simple.

The fourth section presents several experiments showing the

results of applying the procedure in several different

situations. The experiments indicate that the procedure is

very robust and applicaLle to a wide range of real world image

sequences.
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The fifth section discusses various aspects of the procedure

and outlines some applications and extensions.

1. 1. Coordinate System

The camera model consists of a planar retina embedded in a

three-dimensional Cartesian coordinate system (X,Y,Z), with

the origin at the focal point and the optital axlb atlpirt,

with the positive Z-axis (figure 1). The X and Y axes

correspond to the gravitationally intuitive horizontal and

vertical directions respectively. The image plane is parallel

to the XY plane and at some distance along the Z axis

Positions in the image plane are described using a 2-d

coordinate system aligned with the X and Y axes of the camera

coordinate system and with the origin determined by the

intersection of the image plane and the Z-axis.

The axes of translation are unit vectors based at the origin

of the camera coordinate system and are described by two

angles (Phil, Phi2) (figure 2). For a unit vector, V, based

at the origin, Phil is the angle between the (0, 1.0) vector

and the edge determined by the intersection of the YZ plane

and the plane determined by the X axis and V. Phil thus

specifies a plane containing the X axis. Phi2 is the angle

between (-1,0,0) and V. Note that for all angles a and b,

• ,.-". -1
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Figure 2. (Phil, Phi2) Coordinates



1.2. Translational Motion Prcoerties

It is necessary to have a set of terms for describing the

motion of features in an image sequence and the corresponding

motion of environmental points. We define an Image

Displacement Vector to be a two-dimensional vector describing

the displacement of an image feature from one image to the

next. An Image Displacement Field is the set of image

displacement vectors for successive images. An Image

Displacement Sequence indicates the positions of an image

feature over several successive images. Though we are dealing

with discrete image sequences, it is often possible to descibe

the continuous curve along which an image feature point is

moving. This curve is called the Image Displacement Path.

Corresponding to image motions we use a set of terms for

describing environmental motions. An Environmental

Displacement Field is the set of three-dimensional vectors

indicating the positions of environmental points at successive

instants. An Environmental Displacement Seauence indicates

the position of an environmental point over several uccessive

instants. An Environmental Displacement Path describes the

three-dimensional curve that environmental points are moving

along for particular motions.

For general camera motion, there are 5 parameters [PRASO.

PRA81] that can be iecovered from processing image motion

without knowing absolute camera displacement or velocity
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(since absolute depth is lost): two parameters for the unit

vector (Tl(t), T2(t)) which describes the axis of

translational motion at time t; two parameters for the unit

vector (Rl(t), R2(t)) describing the axis of rotation at time

t; and one parameter R3(t) which describes the extent of

rotation about this axis at time t. Both of these axes are

positioned at the origin of the camera coordinate system The

problem of processing image motion resulting from rigid body

camera motion can be organized into subcases of increasing

complexity, corresponding to the number of camera motion

parameters that are unconstrained.

For purely translational motion, the image displacement paths

are determined by the intersection of the translational ,xis

with the image plane. If the translational axis intersects

the image plane on the positive half of the axis, the point of

intersection is called a Focus of "x ansion (FOE) and the

image motion is along straight lines radiating from it. 1his

corresponds to camera motion towards environmental points. If

the translational axis intersects the image plane on the

negative half of the axis, the point is called a Focus of

Contraction (FOC) and the image displacement paths are along

straight lines converging towards it. This corresponds to

camera motion away from environmental points. The

intersections of axes parallel to the image plane are points

at infinity and are treated as FOEs.
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Given the direction of translation and image displacements,

the relative depths of points can be computed by solving the

inverse perspective transform [ROG76]. Relative depth can

also be inferred from the position of a feature and the extent

of its displacement relative to an FOE or an FOC. This

relation is expressed as

D Z
AD AZ

where Z is the value of the Z component of an environmental

point at time t+l, del Z is the extent of environmental

displacement along the Z axis from time t to time t+l, D is

the distance of the corresponding image point from the FOE or

FOC at time t and del D is the image point's displacement from

time t to time t+1. Thus, the Z value of an environmental

point can be recovered from image measurements in units of del

Z, or what has been termed Time-Until-Contact by Lee [LEE76].

The set of all possible translational axes describes a unit

sphere called the translational direction sphere. The

procedures below are defined with respect to this sphere,

rather than the image plane itself, for reasons described in

section 5.2.2.

1.3. Previous and Related Wo_

Gibson[GIB5O,GIB66] was among the first to study the

importance of the structure of optic flow fields in the



control of egomotion. He also pointed out the potential

importance of the FOE in tt'e translational case Ihis work

was extended by Purdy and by Lee [LEE76, LEE80]. Lee analyzed

the computation of important control information durinq

translational motion, such as time-until-contact, brakinQ

information, and environmental depth in a natural coordinate

system. However, recent work by Beverly and Regan [REG78,

REG793 indicates that an alternative mechanism may be used in

humans for determining the direction of translation than

extraction of a FOE or FOC.

Work in processing dynamic images [HUA81, MART79, NAGIJ14.

THOI, ULL813 can be roughly divided into a set of techniques

for determining the changes in a sequence of images and a set

for interpeting these transformations. Determining image

motion has involved work in change detgction, correlation

based matching techniques LGUA71, HAN74, LEV73, relaxation

based matching techniques C BAR79, PRA8OJ, region matching

CNAG78, RAD81]; image differencing [JAID1) and

spatia temporal analysis of the image gradient under

constraints of locally uniform motion [THO80] and smoothly

varying image motion CHOR81, GLASI].

The interpetation of image motion can result in a variety of

descriptions such as determination of the occurrence and

location of change CMAR79]. Ihese include image segmentations

based on common motion [THO80]) the recovery of camera motion

parameters and the shape of environmental objectsi and more

-.
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qualitative descriptions at a level compatible with natural

language descriptions [BAD76, TSOO, O'ROUBO. Particularly

relevant here is work with the recovery of camera motion

parameters from an image sequence. Ullman [ULL79]

demonstrated the minimal number of observable points necessary

to obtain a solution over time. Roach and Aggarwal EROA80]

investigated noise robust computations of the camera motion

parameters. Prazdny developed techniques for decomposing

optic flow fields EPRA80 and displacement fields IPRA813 into

their rotational and translational components. The latter

result has been given a particularly simple algebraic

formulation by Nagel [NAG81b]. Tsai and Huang ETSA813 have

investigated the simplifications in determining camera motion

parameters by restricting the interpretation to planar surface

patches.

Williams [WIL80] was the first to develop algorithms for

interpreting complex natural images produced by an optic

sensor translating relative to environmental objects. This

work consisted of two processes: one for inferring the

direction of translation given environmental depth information

and the other for inferring depth given the direction of

motion. These processes used an error measure describing the

consistency of depth information and the inferences of feature

motion along image displacement paths. His work indicated

that these two processes, for inferring depth and the

translational axis, could be combined.
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The primary weakness of Williams' work was the nece5sar

restriction to planar surfaces at one demonstratd

orientation. Addit.onally, the processing is quite complex

when neither environmental depth nor the direction of

translation is known involving segmentation,

resegmentation, and coordinating the processes for inferrinq

depth and for inferring the direction of translation [he

method presented here requires no restrictions on the

orientation of surfaces or shape of environmental objects, and

involves only a simple procedure for evaluating an error

measure. It also indicates that the direction of sensor

motion should be determined prior to, or concurrently with,

environmental depth.

The determination of the vanishing point in a static image is

closely related to determining the direction of translation

because the FOE is the dynamic analogue of the vanishinq

point. In perspective projection, parallel lines in the

environment map onto lines radiating from a vanishing point in

the image. For translational motion, the environmental motion

paths correspond to the parallel lines in the perspective

case. Techniques for extraction of a vanishing point have

been developed by Kender [KEN79) and Kitihashi [KIT80]. The

use of the Hough transform in this work is similar to the

global sampling of the error measure used below
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2. FEATURE EXTRACTION

The feature extraction process is used to determine small

areas (sometimes called image points or features) in an image

that are distinct from neighboring areas. This

distinctiveness limits the potential matches of these image

areas, and possibly reflects a correspondence to actual and

significant points in the environment, such as points of high

curvature on object boundaries, texture elements, surface

markings, etc. (However some features, termed false features.

will result from noise, occlusion, and light source effects

and have behavior which is currently difficult to interpet).

Features can be represented either as arrays of numbers

extracted directly from an image. or as parameterized tokens

describing local image properties. In this paper, we refer to

features exclusively as small arrays of data values centered

at some point in an image at some time t.

Following Moravec EM0R77,MOR8OJ. the method of feature

extraction used here is based upon finding image areas which

are significantly different than their neighboring areas.

Using a correlation measure bounded between 1 (for perfect

correlation) and 0. the distinctivejnest of a feature is 1

minus the best correlation value obtained when the feature is

correlated with its immediately neighboring areas (see the

correlation measures in section 3.1.). Selecting good

features then requires finding the local maxima in the values
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of the distinctiveness measure over an image

We have extended this approach somewhat by constraining the

neighborhoods over which the features are selected to contours

determined by other global processes, such as zero-crossinq

extraction and thresholding, which are sensitive to edges

2.1. Feature Extraction Using Zero-Crossing

The use of zero-crossings to determine significant image

contours at different levels of resolution has been proposed

and extensively studied by Marr et. al. LHIL8OoMAR8O] In

this processing an image is convolved with Gaussian-Laplacian

masks ((del)**2g) of different positive widths and thresholded

at zero to determine zero-crossing contours. These contours

are significant since they correspond to the points of

greatest change in the convolved image. ihe distinctiveness

measure can be applied to points along these contours in the

convolved image, with the local maxima determininq the

position of potential features. This generally has the effect

of finding points of high curvature along the zero-crossing

contour, although points apparently corresponding to local

occlusion vertices and weak maxima will also be extracted

Many of the weak features which are loral maxima of

distinctiveness can be removed by suppressing those which are

at points of low curvature along the zero-crossinq contours
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For features which are local distinctivness maxima, we

approximate the curvature along the contour by the inner

product of the normalized vectors describing the relative

positions of adjacent local maxima along the contour (figure

3) These values are then thresholded between 1.0

(corresponding to high curvature) and -1.0 (corresponding to

low curvature)

Use of zero--crossing based features requires specification of

the sizes of the convolution masks that are employed, and

deciding whether to position extracted feature points with

respect to the unprocessed image or the convolved images. It

is usually beneficial to use masks of various widths for

sensitivity to features at different levels of resolution.

The processing described below can be applied independently to

the pairs of successive images formed by convolving the

successive images with two such masks. Alternatively,

features can be extracted from the original, unfiltered image

at the positions where features were determined in the

convolved images, though experience with large masks has shown

that this approach can position features significant distances

from their apparent position in the original image.

The images in figure 4a and figure 4b were taken from a

gyroscopically stabilized movie camera held by a passenger in

a car traveling down a country road in Massachusetts. They

are 128x128 pixel ima, es with 6 bits of resolution in

intensity and will be referred to as the M.Ladsian imaaes.
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Figure 4c shows the zero-crossings extracted from the initial

ROADSIGN image using a (del)**2g mask with a width of 5

pixels The distinctiveness values were computed using

features which were 5x5 pixel arrayis extracted from the

convolved image and centered on pixels which were adjacent to

the zero-crossing contour arid of positive value. These

features were correlated, using Moravec 's norm (see section

3. 1), with their 8 immediately~ neighboring features. The

distinctiveness measure for a feature was set to 1 minus the

best correlation obtained in its neighborhood, excluding

itself. Figure 4d shows the local maxima in the

distinctiveness measure positioned with respect to the

zero-crossing contour. Note that the features are centered on

pixels adjacent to the contour and not on the contour itself.

Figure 4e shows the results of suppressing low-curvature

points using a threshold set to -0.8 (corresponding to an

angle of 143. 13 degrees).

2.2. Feature Extraction Usi n_ Threshold Contours

Image contours can also be determined by thresholding. The

values of the threshold can be determined in a variety of

wayjs. such as using fixed increments, finding peaks and

valleys in the image intensityj histogram, or using techniques

sensitive to image contrast produced using a particular

threshold EIKJH81,WES753.
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Figure 4c. Extracted Zero-Crossings of Roadsiqn Image 1
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II

Fiqure lid Distinctive Feature Positions with Respect to 7ero-Crossing Contour
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The images in figure 5a and bb were produced from a solid

state camera held by a robot manipulator translating toward

some industrial parts lying on a table. The images were

initially 512x512 pixel images with 7 bits of intensity

resolution and were averaged down to 128x128 pixel images with

6 bits of intensity resolution. These will be refered to as

the industrial images. Analysis of the image intensity

histogram, using the procedures described in CKOH81),

determined a clear break in the histogram at an intensity

level of 10 in the image. This corresponded to separating the

dark background and the brighter objects in the scene. Figure

5c shows the extracted contour and figure 5d the local maxima

in the distinctiveness measure of image features centered on

pixels adjacent to the contour and of intensity~ value greater

than or equal to ten. Figure 5e shows the extracted feature

points after low curvature suppression using a threshold set

to -0.8 (corresponding to angle of 143. 13 degrees).
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Figure 5c. Extracted Threshold Contour of Industrial Image I
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Fiqure 5d. Distinctive Feature Positions with Respect to Threshold Contour



Figure 5e. Distinctive Feature Positions After Low-Curvature Supples'ion
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3. SEARCH PROCESS

The search process minimizes an error measure which describes

the extent of mismatch for extracted features along the image

displacement paths determined by a hypothesized translational

axis. For example, figure 6 shows an FOE determined by a

potential translational axis and the image displacement paths

it determines for some extracted features. Also shown is the

match profile for a particular feature along a segment of its

displacement path with respect to features positoned in the

succeeding image The adequacy of a proposed translational

axis is measured by the strength of the matches that the

extracted features have along these paths. This suggests

finding the best match for each feature along the image

displacement path determined by a translational axis and then

summing the extent of error in these best matches for the

error measure.

Developing this error measure requires a measure for the

degree of match between features and an interpolation process

for determining positions along an image displacement path.

Each of these can be implemented in various ways with the

choices generally involving a trade-off between the speed of

evaluating the error measure and the precision with which the

translational axis can be determined.
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.1 1 Match Metric

There are several metrics for similarity of nxn pixel features

of the form A(i, j) and B(i, j), where i ranges from I to n and

j ranges from I to n We have utilized:

Normalized Correlation
Y A(i.j)×B(i,j)

ij

L) A (i,j)xm(i,j) x i B(i,j)xg(i,j)

j , ]

Moravec Correlation [MOR77]

y A'i,j)xB(i,j)

i j

(((y X A(i,j)xA(i,j)) + (y X B(i,j)xB(i,j)))/2)
i i i i

Normalized Absolute Value Difftrence

I'0 - J-
0 ) A(i,j) + . ). B(i,j)

Ail of these measures have a value of 1 for a perfect match.

Of these, the first choice is the most conventional, the

second a good approximation to the first, and the third is the

quickest to evaluate-

-t---



3.2. Interpolation Process

The interpolation process approximates the potential

displacements of a feature from an initial image into a

succeeding image. Depending on the accuracy required,

positions along the image displacement path can be

approximated roughly by setting the coordinates of: the

feature's position to the nearest integer value, or more

accurately by performing a subpixel interpolation nt the

feature at each of a set of selected positions along the imaq

displacement path. The basic trade-off is between speed and

accuracy, with subpixel interpolation being a more expensive

computation.

3.3. Errgr Measure

The error measure associates with a point on the direction of

translation sphere a number describing the quality of feature

matches along the image displacement paths determined by the

corresponding translational axis. This error value is

computed by first finding the best match for each feature

along a segment of the image displacement path determined b4

the translational axis using one of the normalized match

metrics above. Each of these values is then subtracted from

one, and all the resulting values are added together to form

an error measure. Thus, for a set of N features in an initial

image, a hypothesized translational axis, and use of one of
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the match metrics above, the error measure is

n
(1.0 - bestmatch(i))

i=1

where bestmatch(i) is the best match value associated with

feature i along the image displacement path determined for it

by the hypothesized translational axis.

The error measure was computed in two forms in the experiments

below: a fast evaluAtion form and a precise evaluation form.

The fast form uses the absolute value norm and the nearest

integer approximation to determine feature position along the

image displacement paths. The fast form is useful for

evaluating image sequences with several extracted features to

determine the rough position of the global minimum. However,

the fast form is not adequate for fine determination of the

translational axis because it does not vary smoothly with

respect to small changes in the position of a translational

axis, due to the nearest integer approximation for feature

position.

The precise form of evaluation uses the Moravec norm and

bi-linear interpolation. It has been found to vary smoothly

with respect to small changes in the position of a

translational axis.
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3.4. hLgch. Druagnizatian

The search process used here consists of two phsases. A global

sampling of the error measure determines the rough shape of

the error surface* then a local search determines the minimum.

The local search begins at the position where the minimum

value was determined by the global sampling. The procedure

used for the local search is steepest descent with a

diminishing step-size. That is, the steepest descent

procedure begins with a Initial fixed step size and determines

a local minimum using it. The step-size is then reduced and

the prodedure repeated until the step-size is at the desired

resolution for the determination of the translational axis.

In the experiments below the initial step-size was set to 0.1

and then reduced successivelyj to 0.025 and 0.005 radians.

As will be seen in the following experiments, the error

measure Is smooths with a single minimum in a large

neighborhood around the correct translational axis. Thus, the

global sampling can be quite sparse or the initial step size

of the local search quite large.
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4. EX P R g NTg

The following experiments were performed using the roadsign

and industrial image sequences introduced earlier. They cover

a wide range of situations. The first experiment involves

determining the translational axis for the industrial image

sequence using the features indicated in figure 5e. In this

sequence the translational axis intersects the image plane in

a visible portion of the image. The second experiment

involves processing the industrial image sequence using a

small number of features that are positioned across the

initial image of the sequence. The third experiment involves

processing the roadsign image sequence using the features

extracted at the positions indicated in figure 4e from the

initial, unconvolved image. In this sequence the intersection

of the translational axis and the image plane is not in the

visible portion of the image. The fourth experiment involves

processing the roadsign image sequence, but using the features

extracted prior to low-curvature suppression. This has the

effect of introducing weak and spurious features into the

error measure computation. The fifth experiment involves

processing the roadsign images using features extracted from a

small area of the initial image.

In all of the experiments, the maximal displacement along an

image displacement path was set to 10 pixels. Displacements

were in increments of I pixel along the image displacement

_ ..A



3')

paths. Features were 7x7 pixel arrays centere at the

positions in the indicated figures.

For each experiment, the results of processing are contained

in 3 tables. The first two (tables a and b) indicate the

values of the error measure during the global sampling of

points using a fixed angular increment (equal to PI/10 or

0.31416 radians or 18 degrees) on the direction of translation

sphere. The first of these tables corresponds, to

translational axes which intersect the image plane at FUEs,

The second basically corresponds to those which intersect the

image plane at FOCs. Recall that the Phil coordinate

determines a plane containing the X-axis of the camera

coordinate system and Phi2 refers to positions of unit vectors

in such a plane.

The third table (table c) shows the minimal value determined

by the global sampling process and the successive values of:

the error measure determined during the local search. In this

table, the position of the translational axis is referred to

in terms of (XoY,Z) camera coordinates, in addition to

(PhilPhi2) coordinates, so that translational axes computed

under different situations can be compared.

4. 1. Industrial Images

The procedure was applied to the industrial images using the
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features extracted at the positions shown in figure 5e.

Tables .a and lb show the global sampling of the error measure

using the fast form of evaluation. Note the minima at

Phil=1, 57080 and Phi2=l.25660. Table Ic shows the successive

values of the local search using the precise form of

evaluation. The determined translation axis is (-0.13875,

-0 09887, 0.98538). The ,mage displacements determined for

these features is shown in figure 7.

4 2. Industrial Images with Selected Features

The procedure was again applied to the industrial image

sequence but using features which were selected by hand from

those indicated in figure 5e. The positions of these 8

features are shown in figure 8.

Tables 2a and 2b show the global sampling of the error measure

using the precise form of evaluation. Note the minima at

Phil=l 57060 and Phi2=1.57080. Table 2c shows the successive

position determined by the local search. The determined

translational axis was (-0.1543E, -0.07896, 0,98485). This

corresponds to an angular difference of 0.0253 radians (1.4505

degrees) with respect to the axis determined in experiment 1.

. i i - -,
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4.3. Roadsian Image Sequence

The procedure was applied to the roadsign image sequence usinq

the features extracted at the positions indicated in figure

4e. Tables 3a and 3b show the global sampling of the erTor

measure using the fast form of evaluation. Note the minima at

Phil=2. 51330 and Phi2=O.62832. Table 3c shows the successive

values of the local search using the precise form of

evaluation for the error measure. The translational axis

determined by this process is (-0.83738, -0 42043, 0 34933)

The image displacements for the feature points shown in fiqurP

4e consistent with this translational axis are shown in fiquTr

9.

Given the direction of translation and imaqe displacements,

the relative environmental depths of image points can be

recovered by the simple relation in equation 1 When xmdqe

displacements are small, the inferred depth values can be

quite erratic due to sensitivity to small numbers in the

denominator in the left hand side of equation I For this

reason# it is necessary to keep track of the imaqe

displacements over several successive images with concurrent

updating of the inferred depth values. This was done usinq a

seqtence of four successive images from the roadsign sequence

beginning with roadsign images 1 and 2 and using the feature.

from image 1 at the positions in figure 4e The position of

the translational axis deternined from images T(t) and l(t+1)

was used as the initial value in the local search for

. .. ..
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determing the translational axis for images l(t+l) and I(t0 2

The displacements of all features along the contour in fiqur-e

4c were determined along the image displacement path-

determined by the translational axis found for images 1(1) arid

1(4). From these displacempnts the depth values for image

points along the contour were computed using equation I

The roadsign sequence is particularly nice fot presentinq

depth processing results because the three environmental

objects in the images are at three distinct depths This is

shown in figure 10a by the three distinct clusters in the

histogram of the depth values calculated for the points along

the contour. The units in the histogram are cummulative

time-until-contact values. That is, the depth is given in

uni'ts of the displacement of the camera from I(1) to 1(4)

along the Z-axis. From left to right, the first ppak

corresponds to the sign, the second to the pole, and the third

to the trees. As can be seen, there is a wide range of depths

associated with the trees. Mapping these clusters back onto

contour points from figure 4c yields: the boundary shown in

figure lOb (the sign), the boundary shown in figure 1Oc (the

pole), the boundary segment shown in figuire 10d (the trees)

Points near the image boundary of I(1) were ignored because,

the processing did not take into account occlusion eFfpcts

along the image boundaries.
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Fiqjure 10c. Image Points in H stogran Cluster Corresponding to the Pole
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4 4 Roadsign Sequence with Redundant Features

The procedure was applied to the roadsign image sequence using

the features which were extracted prior to low-curvature

suppression. The positions of these features is shown in

figure 4d. This has the effect of including several weak and

false features in the evaluation of the error measure.

Tables 4a and 4b show the values of the global sampling of the

error measure using the fast form of evaluation. Note the

minima at Phil=2. 51330 and Phi2=0.62832. Table 4c shows the

successive values of the local search. The determined

translational axis was (-0.82909, -0,42281, 0.36585). This

corresponds to an angle of 0. 0186 radians (1.0676 degrees)

ujith respect to the axis determined in experiment 3.
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4.5. Roadsign Subimage

The procedure was again applied to the roadsign image sequen,_e

with features restricted to the rectangular area ,hown in

figure 11 correponding to texture in the distant trees

Tables 5a and 5b show the values of the global samplinq of the

error measure using the precise form of evaluation. Note the

minima at Phil=2. 19910 and Phi2=0. 62832. Table 5c shows the

successive values determined by the local search [he

translational axis is determined to be (-0.84281. -0.42928,

0.32465). This corresponds to angles of 0.026/ radians

(1.5341 degrees) and 0.0439 (2. 5155 degrees), with respect to

the translational axes determined in experiments 3 and 4

respectively.
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Figure 11. Features in Restricted Subarea of' Roadsign Image I
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Phl Phi2 XY Z Error Stepsize

2.19.1 0.62 32 -0.80902 -0-34549 0.47553 0.059910

,,.?191 0.62832 -0.80902 -0.39123 0.43867 0.059542 0.1

2.4741 0.57832 -0.83738 -C. ' 2910 0.33837 0.059288 0.025

2.4941 0.56832 -0.84281 -0.42928 0.32465 0.059269 0.005

Table 5c



5. D ICUSSION

This paper presents a simple and robust procedure For

determining the direction of environmental motion and image

displacemensts in image sequences produced by a translatinq

sensor. The procedure is robust in several different ways

It is resilent with respect to weak and false features It is

not dependent on identical features being extracted in

successive images prior to matching It can use a small

number of features positioned across an image surface or a

small number of features from a limited area of the imqqe.

The primary difficulty with real-time implementation is the

expense of performing the Interpixel interpolation for Pine

resolution and of performing correlations on features which

are arrays of pixels. The computational limitation is the

speed with which a feature can determine and evaluate its

potential matches given a specified translational axis. ihese

computations can be carried out in parallel amoung the

individual features. The expense can be lessened somewhat

through the use of higher resolution images (to lessen the

need for interpixel interpolation), use of the absolute value

norm, and by sampling images at a rate sufficient to limit the

extent of feature displacements between images. Additionally,

if the direction of sensor translation is changing slowly,

information from processing preceeding images can be used to

speed up the procedure when applied to succeeding images. It
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is also possible to modify the procedure so that feautres are

extracted from both images and correlations are performed only

at the positions where features have been extracted in the

succeeding image. This would probably affect the robustness

and resolution of the procedure. We hope that real-time

implementation will eventually be possible with special

purpose, highly parallel architectures.

In the remainder of this section, we review some specific

aspects of the procedure and outline some potential extensions

and applications.

5 1. Feature Extraction

Since the procedure's performance is does not degrade severely

due to the occurrance of poor features, the type of feature

extraction used in probably not critical. Nonetheless, the

feature extraction process used here could be extended in many

ways. The low-curvature suppression could take into account

boundary length along a contour between distinctiveness maxima

to determine whether to suppress or generate a feature for

further processing. It may also be possible to determine

points of high curvature along the boundary with out having to

walk along the contour by using operators which can directly

measure curvature CKITC8OJ.

Another useful extension would be to use information



determined from the extraction of the translational axis to

isolate false features. This could involve removing those

features which have weak matches from the error mieasure

calculation once a translational axis has been determined and

re-evaluating. Alternatively, the depth inferences could be

used to isolate the positions of potential false featuresby~

noting discontinuities in depth along an extracted contour

Extracted features could be removed from the re-evaluation of

the error measure if they are at or near such positions

Another type of feature which can affect the evaluation of the

error measure are those near an FOE or FOC which is contained

in a visible portion of the image. Such features tend to move

very small amounts along their image displacement paths and

hence require fine interpolation to determine their best

matches.

5. 2. Search Process

5. 2. 1. Properties o-f the Error Measure

In the experiments, the error measure has a distinct global

minimum at the point on the unit sphere corresponding to the

correct translational axis. It is expected to have such

behavior generally because it is very unlikely that

translational axes that are far from the correct position will

define image displacement paths that simultaneously allow good

matches for many features. Thus competing candidates for the



62

global minimum should not be widely separated.

The error measure is affected by both non-distinctive and

false features. Nan-distinctive features will match well for

many different translational axes. Large numbers of these

weak features will flatten the response of the error measure.

False features will also distort the error measure since they

will often have their best matches with incorrect

translational axes.

The effects of these poor features should be compensated by

the agreement of good features. Every one of the good

features will tend to have a bad match for the incorrect

translational axis and their unanimity is expected to overide

the lack of discrimination of weak features and the random

quality of the matches of false features.

5.2.2. Utilitu 2f. th Direction of Translation Sper

There are significant advantages in defining the error measure

with respect to a unit sphere, instead of the potential

positions of FOEs and FOCs in the image plane. The sphere is

a bounded surface which makes uniform global sampling of the

error measure feasible. Additionally, the resolution in the

position of the translational axis varies accross the surface

of the image plane. For example, the FOEs determined by

translational axes seperated by very small angles will be



seperated by larger and larger distances in the plane as the

intersections of the translational axes and the image plane

are placed further from the visible image. The effect of this

on the error measure, when it is defined over the image plane,

is large flat areas for FOEs further from the visible portions

of the image. Finally, special criteria must be used t,;

distinguish between FOEs and FOCs if the error measure I')

defined relative to the image plane. Roughly parallel imaqe

displacements could correspond to an FOE off to one side of

the image plane or to an FOC of to the opposite side On the

direction of translation sphere, the correspondinq

translational axes would be close while on the plane they are

completely separated.

5.2.3. Optimization Procedure

The optimization procedure used here is very simple, and,

because of the strong unimodality of the error measure and its

smoothness, other techniques with more rapid convergence could

be used. It is interesting to note, however, that the global

component of the optimization performed here is an instance of

a generalized Hough Transform [BAL81,O'ROU81] inwhich each

feature scales its vote for a particular translational axis by

the best match it can find consistent with the translational

axis.



5 3 Extensions and Applications

5 3. 1. Other Cases of Restricted Motion

The procedure developed in this paper is applicable to other

cases of unknown but restricted camrera motions for which it is

computationally feasible to search directly through a subspace

of the camera motion parameters to determine feature matches.

Two particular cases are pure sensor rotation and motion

constrained to a known plane.

For pure sensor rotation, there are three unknown camera

parameters. Two for the axis of rotation and one for the

extent of rotation about the axis. In this case, the error

measure would be defined with respect to a unit sphere inwhich

each point corresponds to an ayis of rotation. For each

rotational axis, the extent of displacement For image features

is determined by different rotations about the axis. There is

the additional constraint in the rotational case that the

displacements of all features must correspond to the same

extent of rotation.

During arbitrary sensor motion relative to a stationary

environment, the image motion due to distant environmental

points is primarily due to the rotational component of sensor

motion Sensor rotation can be recovered by applying the

observer rotation procescing procedure to the images of such

distant points. The rotation can then be subtracted out to



yield successive images related by sensor transl,3tIG, CB[

These resulting images can then be processed by the ter hniqueJ

here.

5.3.2. Multiple [ndependentl Moving Objects

The processing here has been limited to a camera movinq

relative to a stationary environment, or a stationaru camer

with a stationary background and a single moving ob.je't

useful extension would allow For several independentlu mvinro

objects with different directions of translation the

technique of summation of errors in feature mat,-hing onlt

allows a single axis of translation to be determined and will

cause the analysis of the several objects in independent

motion to be confounded. Due to the similarity of the global

search and a generalized Hough transform noted above, the

suggested techniques for decomposing generalized Hough

transforms into constituient objects havinq different

parameter values [ADI82, BALBI, O'ROUB1] maw be applicable

Another approach is to segment an image into regions which

potentially correspond to objects, or to arbitrarily divide

the image into regular overlapping subimages and perform the

translational analysis for each region or ubimaqe

independently [WIL80,NA079]. Experiments have shown it Is

possible to work with small image areas, at a size comparable

to extra-ted regions or subimage areas, and still determinre

0 ;- - -- - - -,- -- -..- . . - -, " A -M 0 Wa - 4 -W
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the axis of translation with a reasonable level of precision.

If objects with similar translations correspond to several

different regions or image subareas, then similar

translational axes will be determined for these regions or

subimaqes If objects with different translations correspond

to the same regions or subimages then there will be poor,

indistinct error values for the error function For this

',econd case, it is necessary t-3 resegment and redetermine a

translational axis.

5 3 3. Stabilized Retina

Translational processing is sufficient for vision-based

navigation in a stationary environment if the orientation of

the optic sensor can be fixed relative to the environment over

time In this case, sensor motion amounts to a sequence of

translations in possibly different directions over time.

A difficulty with such a stabilized retina is that much of the

environment would not be observable. This can be corrected by

using a set of such stabilized retinas arranged to yield a

complete view of space. There would then be no need to rotate

the sensor to view a particular environmental point. A

possible arrangement of retinal surfaces is a cubical one.

One of the retinal planes will always contain an FOE and

another will always cnetain an FOC (unless the direction of

motion is right on an edge of the cube and the focal length



has not been properly adjusted) There will also be eveiii

independent estimates of the directon of trari Iation whiLh c,,Tl

be integrated

5.3.4. The Local Translational Decomposition

This technique can be extended to less restricted +orm, oi

sensor motion by applying the procedure for translation-i

motion to small, overlapping areas across an image uTfaf e

over a sequence of images. This approximates more qener-a

motions as consisting locally of environmental traniations

and interpets local image motion as resultinq fr0M

environmental translations. Ihe feasibility of this is based

upon experiments showing that the direction of translation can

be extracted with reasonable precision using small image areas

containing a few features. The resulting description

associates with a set of image points (or small image area',)

the approximated direction of motion of the corresponding

environmental points (or small environmental surface area)

As a low level representation of environmental motion, this

can considerably simplify the recovery of the sensor motion

parameters [LAWS2]. It can also provide qualitative

information concerning the rough direction of motion of

objects in a scene.

.........................
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and shape of environmental objects. It has been applied successfully to

real-world image sequences from several different task domains.

The processing consists of two basi eps: Feature Extraction and

Search. The feature extraction process p _:s out small image areas which

may correspond to distinguishing parts of eavironmental objects. The
direction of translational motion is then found by a search which

determines the image displacement paths along which a measure of feature

mismatch is minimized for a set of features. The correct direction of

translation will minimize this error measure and also determine the

corresponding image displacement paths for which the extracted features

match well.
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